
math up for hacking sdrs

moritz fischer

hackerspace brussels

June 30, 2012

1 / 51

the plan
intro

hello world
complex numbers
signals

rough classification
the spectrum of a signal

system theory
convolution
input output relation
composition of linear systems

going digital
why?!
the mathz

the z-transform
why another transform?

normalized frequencies
the discrete fourier transform
digital filters

real world dsp
2 / 51

hello world

• doing my master in communications engineering in Germany

• hanging around here, FPGAs, uCs, GNU Radio

3 / 51

my life was a lie

let’s go back to highschool maths . . .

0 = x2 + x + 1

x1,2 = −1

2
±
√

12 − 4

2

= −1

2
±
√
−3

2
(1)

there are no solutions to this equation then, right?

4 / 51

my life was a lie (II)

• what if we had something (let’s call it j) that

j2 = −1

j =
√
−1 (2)

• then we could just write

x1,2 = −1

2
±
√
−1
√

3

2

= −1

2
± j

√
3

2
(3)

5 / 51

my life was a lie (III)

• so now our solutions can be written as a sum x1,2 = a± jb.

• we call a the real part Re, and b the imaginary part Im of x1,2.

• let’s identify this with a two dimensional vector

~x =

(
a
b

)
=

(
Re(x)
Im(x)

)

6 / 51

example plot for complex numbers

7 / 51

stuff to know about complex numbers

• x = a + jb = Re(x) + jIm(x) = |x |e jφ = |x |[cos(φ) + jsin(φ)]
(euler’s identity)

• x∗ = a− jb = |x |e−jφ (complex conjugate)

• |x |2 = xx∗ = Re2(x) + Im2(x)→ |x | =
√

Re2(x) + Im2(x)

• j = e j π
2 = e j90◦ → −j = (j)∗ = e−j π

2 = e−j90◦

• φ = tan−1(Im(x)
Re(x))

• in general we prefer radians over degrees, i.e. φradian = π
180φdegree

8 / 51

some small examples

• what is the real part of x = 1− j ?

• what is the imaginary part of x = 1− j ?

• what is the absolute value of x = 1− j ?

• φ(x)?

• 45◦ in radians?

• 6
8π in degrees?

9 / 51

example plot for complex numbers

10 / 51

complex numbers

11 / 51

continuous & discrete vs analog & digital

• analog (continuous in time and value)→ x(t) ∈ R,C, t ∈ R
• digital
◦ discrete time + float → x(k) ∈ R,C, k ∈ Z
◦ discrete time + fixed point → x(k) ∈≈ R,C, k ∈ Z
◦ discrete time + int → x(k) ∈ Z, k ∈ Z
◦ . . .

12 / 51

properties that come to mind

• random, e.g. brownian noise

• deterministic

• periodic → x(t) = x(t + kT0)∀k ∈ Z
• real / complex

13 / 51

let’s be a bit more systematic

• imagine your signal x(t) as
a painting, drawn with a
fixed set of watercolors

• kind of coordinates in colors
(0.5red , 1.3blue . . .).

• how much of each color has
been used to paint this
picture?

• step back a bit, abstract,
each color is a frequency

14 / 51

fourier transform

X (ω) =

∫ +∞

−∞
x(t)e−jωtdt (4)

x(t) =
1

2π

∫ +∞

−∞
X (ω)e jωtdt (5)

• we call X (ω) the spectrum of x(t)

• fourier transform tells us “how much” of frequency ω is in our
signal

15 / 51

example: single tone

Figure: single tone signal Figure: spectrum |X (ω)|2

16 / 51

example: dual tone

Figure: single tone signal Figure: spectrum |Y (ω) + Y2(ω)|2

17 / 51

properties of the fourier transform

• linear (see dual tone example),

xsum(t) = α1x1(t) + α2x2(t) c sX (ω)sum = α1X1(ω) + α2X2(ω)

• translation → phase shift,
x(t − to) c sX (ω)e−jωto

• scaling
x(at) c s 1

|a|X (ωa)

• convolution (explanation later)

(f ∗ g)(t) c sF (ω)G (ω)

• uncertainty principle (same as in qm), i.e. cannot be localized well
in time and frequency

18 / 51

• goal here to give intuition, if you’re interested in the details, check
out literature

• we don’t calculate this stuff by hand, we use tables of
correspondences and the properties from the slide before, is listed
e.g. on wikipedia

• interesting correspondences include

◦ 1 c s2πδ(x)

◦ cos(ω0t) c sπ(δ(ω − ω0) + δ(ω + ω0))

◦ e jω0t c s2πδ(ω − ω0)

◦ rect(ω0t) = 1 for t ∈ [− 1
2ω0

, 1
2ω0

] c s 1
|ω0|

sin(ω
2πω0

)
ω

2πω0

• imagine δ(x) as 1 at x = 0 and 0 everywhere else

19 / 51

example: rectangular pulse

Figure: rectangular pulse, ω0 = 1 Figure: Re(X (ω))

20 / 51

example: rectangular pulse

Figure: rectangular pulse, ω0 ≈ 1
8 Figure: Re(X (ω))

21 / 51

some further remarks

• narrow in {frequency,time}
→ wide in {time,frequency}

• real signals are always
symmetric w.r.t ω = 0

• use tables!

• I cheated a bit before by
using the FFT to calculate
the spectra . . .

22 / 51

basic idea about fourier transform

23 / 51

system theory

• allows us to classify systems that do something to signals

• here we’ll cover so called LTI systems

• again on hand waiving level to gain intuition

24 / 51

LTI systems

• Linear Time Invariant

• linear we already saw that before, remember?
S{α1x1(t) + α2x2(t)} = α1S{x1(t)}+ α2S{x2(t)}

• time invariant → system always behaves the same, i.e. for the
same input, we always get the same output.

• why would we limit ourselves to this case?
◦ acronyms sound fancy / smart
◦ have useful properties
◦ huge class of real systems are like this
◦ if something is non linear, we can linearize it most of the time

25 / 51

input output relation in an LTI system

• the output is the convolution integral

• y(t) =
∫∞
−∞ x(t)h(t − τ)dτ = (x(t) ∗ h(t))(t)

• wtf is h(t)?

• we call h(t) the impulse response of a system, i.e. what happens if
we plug δ(t) into the system.

• we could measure h(t)

• obviously convolution integrals are nasty

26 / 51

input output relation in an LTI system (II)

• remember the properties of the fourier transform?

• (x(t) ∗ h(t))(t) c sX (ω)H(ω)

• y(t) = (x(t) ∗ h(t))(t) c sY (ω) = X (ω)H(ω)

• any idea how to get h(t) now?

27 / 51

input output relation in an LTI system (III)

• system is completely described by either one of h(t) c sH(ω)

• we call H(ω) a system’s frequency response

• describes how a system responds to an input signal of frequency ω.

• sine / cosine are eigenfunctions of the system

28 / 51

composition of linear systems

• system is completely described by either one of h(t) c sH(ω)

• order of linear operations can be exchanged

• composition can be easily done in fourier domain

• sine / cosine are eigenfunctions of the system

29 / 51

composition of linear systems (II)

• again note that multiplication is commutative

• so is the application of linear systems

30 / 51

composition of linear systems (III)

• both of the systems are identical

• again note that addition is also commutative

• so is the application of linear systems

31 / 51

basic idea of LTI systems and composition

32 / 51

why?

• analog is old ;-)

• quality

• performance

• price

33 / 51

a basic dsp system

• input signal is x(t) which is
continouus

• sampling it with a period Ts

gives us the sequence
x(nTs) = x(k).

• usually we do some digital
stuff then

• normally the output will be
analog again in some form

34 / 51

how does this translate to math

• input signal is x(t) and continuous

• we want x(nT), so how about x(nT) =
∑

n x(t)δ(t − nT)

x(nTs) c s1

T
X (

ω

Ts
)

x(t + nTs) c s1

T
X (

ω

Ts
)e jω t

T

∞∑
n=−∞

x(t + nTs) c s 1

Ts

∞∑
ω=−∞

X (
ω

Ts
)e jω t

Ts (6)

. . .
∞∑

n=−∞
x(nTs)δ(t − nTs) c s 1

Ts

∞∑
k=−∞

X (ω +
k

Ts
) (7)

35 / 51

second glance at the obtained spectrum

• phew . . . quite some formulae there . . .

• let’s have another look at the last one

∞∑
n=−∞

x(nTs)δ(t − nTs) c s 1

Ts

∞∑
k=−∞

X (ω +
k

Ts
) (8)

• spectrum is periodic with 1
Ts

= fs

• → to avoid overlap (aliasing) |ωmax | ≤ 2π fs
2 , i.e.

X (ω) = 0 for |ω| /∈ [0, fs
2]

36 / 51

this is important

• we learned we have to sample with fs ≥ 2fmax or |ωmax | ≤ 2π fs
2

• this holds at all times if our signal is bandlimited

• under the given conditions the spectral content in [− fs
2 ,

fs
2] can be

used to completely reconstruct x(t)

• there are some exceptions (I’ll not discuss however)

37 / 51

sampling theorem

38 / 51

why another transform?

• we just learned how to
sample a signal, so now
we’re digital

• fourier transform and all the
system stuff we saw before
is analog, though

• using the analog stuff for
discrete systems becomes
tedious

• specialized transform to
handle discrete cases would
be nice

39 / 51

the z-transform

X (z) =
∞∑

n=−∞
x(n)z−n (9)

• the inverse is kinda mathy so let’s keep this for later

• let’s talk a bit about properties

• convergence, i.e. when is X (z) less than ∞?

• linear (we saw that already)

40 / 51

the z-transform (II)

• time lag x(n − n0) c sX (z)z−n0

• convolution y(n) =
∑∞

m=−∞ x(m)g(n −m) c sY (z) = X (z)G (z)

41 / 51

the z-transform (III)

• let’s throw what we know at an example ;-)

• upper branch: x(n)α0
c sα0X (z)

• lower branch: x(n + 1)α1
c sα1z

−1X (z)

• linear: y(n) = α0x(n) +α1x(n + 1) c sY (z) = (α0 +α1z
−1)X (z)

42 / 51

the z-transform (IV)

• let’s have another look at the last part

• y(n) = α0x(n) + α1x(n + 1) c sY (z) = (α0 + α1z
−1)X (z)

• we call G (z) = Y (z)
X (z) the system’s transfer function in this case

G (z) = (α0 + α1z
−1)

• remark: the structure we saw corresponds to a two coefficient
digital filter

43 / 51

normalized frequencies

• we saw before that discrete signals are periodic with 1
Ts

• so we can just look at one period (the first one) from [−fs
2 , fs

2]

• we can identify this with [−π, π] by just letting fs
2 = π

• nomenclature not clear in literature usually either Ω or ω for
normalized frequencies

44 / 51

the discrete fourier transform

• it might be interesting to see a discrete system’s behaviour in
frequency

• X (Ω) =
∑N−1

k=0 x(n)e−jΩn

• x(n) = 1
2π

∫ π
−π X (Ω)e jΩndΩ

• closer look reveals if we let z = e jΩ we again got our z-transform

• neat: take the transfer function of a system G (z) let z = e jΩ we
got our (discrete) frequency response G(e jΩ)

45 / 51

the discrete fourier transform (DFT)

X (Ω) =
N−1∑
k=0

x(n)e−jΩn (10)

x(n) =
1

2π

∫ π

−π
X (Ω)e jΩndΩ (11)

• gives us the spectrum at N points Ωk = k 2π
N (imagine we divide

[−π, π] into N-1 intervals)

• in these points same as the sampled spectrum obtained by a
continuous fourier transform

• assumes implicitly that our signal is periodic

• behaves rather similar to a fourier transform but some nasty
catches related to periodicity

46 / 51

digital filters

• a system that has (mostly in
frequency) a certain
behaviour we designed

• one example could be the
anti-aliasing lowpass we saw
with sampling

H1(Ω) =

{
1 if|Ω| ≤ π
0 otherwise

• on the right kind of
prototype lowpass, any idea
what might be the problem?

47 / 51

digital filters IIR vs. FIR

• FIR = finite impulse
response

• no feedback, always stable

• can be designed to have
linear phase

• order = #coefficients -1

• we focus on these ones

• IIR = infinite impulse
response

• feedback, may or may not
be stable

• cannot have linear phase

• if linear phase is not a
requirement, more bang for
buck

48 / 51

DIY FIR filters using the windowing method

• technique called window method

• idea: specify ideal frequency response, and calculate it’s iverse →
straightforward

1. pick your ideal frequency response Hideal (Ω)
2. pick a filter order (how many coefficients?)
3. if order is odd we have to cope for the delay to make filter causal

Hideal,causal (Ω) = Hideal (Ω)e−j N−1
2 Ω

4. compute hideal,causal (n) = 1
2π

∫ π
−π Hideal,causal (Ω)e jΩndΩ

5. pick window function, calculate w(n) e.g.
whamming (n) = 0.54− 0.46cos(2πn

N−1)

49 / 51

windowing method example

• say we want to design a lowpass with ωcutoff = π
4 and order 4

hideal ,causal (n) =
1

2π

∫ π
4

−π
4

e−j N−1
2

Ωe jΩndΩ

= [
1

2π(n − N−1
2)j

e jΩ(n−N−1
2

)]
π
4

−π
4

=
sin(π4 (n − N−1

2))

π(n − N−1
2)

=
sin(π4 (n − 4

2))

π(n − 4
2)

(12)

w(n) = 0.54− 0.46cos(
2πn

4
) (13)

50 / 51

numpy and gnuradio

• numpy’s fft goes from [0, 2π] not from [−π, π] so use

numpy.fft.fftshift()

• matplotlib + pylab is quite nice

• ipython -pylab

or bpython make quite nice IDEs

• when working with real world stuff avoid designing filters by hand
;-)

51 / 51

	intro
	hello world

	complex numbers
	signals
	rough classification
	the spectrum of a signal

	system theory
	convolution
	input output relation
	composition of linear systems

	going digital
	why?!
	the mathz

	the z-transform
	why another transform?

	normalized frequencies
	the discrete fourier transform
	digital filters
	real world dsp

