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hello world

e doing my master in communications engineering in Germany
e hanging around here, FPGAs, uCs, GNU Radio
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my life was a lie

let's go back to highschool maths ...

0=x>+x+1
1 ViZ_4
gy
X2 =75 2
]_ _
__ L v=3
2 2

(1)

there are no solutions to this equation then, right?
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my life was a lie (Il)

e what if we had something (let’s call it j) that

f=-1
j=v-1 (2)
e then we could just write
1 V-1V3
X120 = ) + >
- ©
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my life was a lie (1)

® so now our solutions can be written as a sum x; » = a &£ jb.
e we call a the real part Re, and b the imaginary part Jm of xq 5.
e let's identify this with a two dimensional vector

<0G
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example plot for complex numbers
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stuff to know about complex numbers

o x = a+jb=NRe(x) +,Im(x) = |x|e/® = |x|[cos(¢) + jsin(¢)]
(euler's identity)

o x* = a— jb=|x|e/® (complex conjugate)

o X =0t = Re(x) + Tm2(x) = [x| = /Re(x) + Tm2(x)

C =t = e s () = e = e

¢ =tan ' (;ned)

* in general we prefer radians over degrees, i.e. ¢radian = 1ggPdegree
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some small examples

e what is the real part of x =1—j 7

e what is the imaginary part of x=1—, 7
e what is the absolute value of x=1—, 7
* ¢(x)?

e 45° in radians?

6 .
e g7 in degrees?
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example plot for complex numbers
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3 Achievement unlocked

complex numbers
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continuous & discrete vs analog & digital

* analog (continuous in time and value)— x(t) € R,C,t € R
e digital

discrete time + float — x(k) e R,C,k € Z

discrete time + fixed point — x(k) ex R, C, k € Z

discrete time + int — x(k) € Z, k € Z

O
O
O
]
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properties that come to mind

random, e.g. brownian noise

e deterministic

periodic — x(t) = x(t + kTo)Vk € Z
real / complex
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let's be a bit more systematic

e imagine your signal x(t) as
a painting, drawn with a
fixed set of watercolors

e kind of coordinates in colors
(0.5red, 1.3blue ... ).

e how much of each color has
been used to paint this
picture?

e step back a bit, abstract,
each color is a frequency
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fourier transform

+o0 .

X(w) = /_ x(t)e T4t d (4)
| e .

(0= o [ X(w)etat (5)

e we call X(w) the spectrum of x(t)

e fourier transform tells us “how much” of frequency w is in our
signal
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example: single tone
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Figure: single tone signal Figure: spectrum | X (w)[?
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example: dual tone
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properties of the fourier transform

e linear (see dual tone example),
Xsum(t) = a1x1(t) + aoxa(t)o—eX(w)sum = a1 X1(w) + a2 Xo(w)
e translation — phase shift,
x(t — to)o—eX(w)e Wt
e scaling
x(at)o—e X(%)
e convolution (explanation later)
(f * g)(t)o—oF(w)G(w)
* uncertainty principle (same as in gm), i.e. cannot be localized well
in time and frequency
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e goal here to give intuition, if you're interested in the details, check
out literature

e we don't calculate this stuff by hand, we use tables of
correspondences and the properties from the slide before, is listed
e.g. on wikipedia

e interesting correspondences include
o lo—e27d(x)
o cos(wgt)o—er(d(w — wg) + §(w + wp))
o eloto—e27d(w — wo)

1 1 1 sin(525-)
o rect(wot) = 1for t € [~ 5k, i Jo—eph T e

e imagine d(x) as 1 at x = 0 and 0 everywhere else
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example: rectangular pulse

05

Figure: rectangular pulse, wg =1
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example: rectangular pulse
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Figure: rectangular pulse, wo ~ g Figure: Re(X(w))
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some further remarks

Hi, Dr. Elzabeth?
Yeoh, uh... T accidente)ly Tk
the Fauner traosform of Ty cat...

;f} Meaw
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narrow in {frequency,time}
— wide in {time,frequency}
real signals are always
symmetric w.r.t w =0

use tables!

| cheated a bit before by

using the FFT to calculate
the spectra . ..




3 Achievement unlocked

basic idea about fourier transform
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system theory

e allows us to classify systems that do something to signals
e here we'll cover so called LTI systems

e again on hand waiving level to gain intuition
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LTI systems

Linear Time Invariant

linear we already saw that before, remember?

S{aixi(t) + aoxo(t)} = a1S{x1(t)} + a2S{x2(t)}

e time invariant — system always behaves the same, i.e. for the
same input, we always get the same output.

why would we limit ourselves to this case?

o acronyms sound fancy / smart

o have useful properties

o huge class of real systems are like this

o if something is non linear, we can linearize it most of the time

25 / 51



input output relation in an LTI system

e the output is the convolution integral

o y(t) = JZo x(t)h(t — 7)dT = (x(t) * h(1))(t)

o wtf is h(t)?

e we call h(t) the impulse response of a system, i.e. what happens if
we plug (t) into the system.

e we could measure h(t)

e obviously convolution integrals are nasty

a(t) —— [S{o}|—— ()
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input output relation in an LTI system (I1)

e remember the properties of the fourier transform?
(x(t) * h(t))(t)o—eX(w)H(w)

y(t) = (x(t) * h(t))(t)o—oY (w) = X(w)H(w)
any idea how to get h(t) now?

X(w)—— |H(w)

Y(w)
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input output relation in an LTI system (l11)

e system is completely described by either one of h(t)o—eH(w)

we call H(w) a system's frequency response

describes how a system responds to an input signal of frequency w.
e sine / cosine are eigenfunctions of the system
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composition of linear systems

e system is completely described by either one of h(t)o—eH(w)

order of linear operations can be exchanged

e composition can be easily done in fourier domain

e sine / cosine are eigenfunctions of the system

x(t) — |Si{o}

Sa{o}

Sz{o}

HQ(LU)

Hj(w)

—Y(w)



composition of linear systems (1)

X(wy— |H1(w)

HQ((.U)

X (w)— [H1(w)Ha(w) Hs(w)

e again note that multiplication is commutative

e so is the application of linear systems
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composition of linear systems (I11)

X(w)— |H1(w) @ Y (w)

N .

X(w)— |Hi(w) + Hy(w) | — Y (w)

e both of the systems are identical
e again note that addition is also commutative

e so is the application of linear systems
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3 Achievement unlocked

basic idea of LTI systems and composition
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analog is old ;-)

quality
e performance

e price
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a basic dsp system

e input signal is x(t) which is 20 *,ﬂ 2(nT) = 2(k)
continouus
. . . ; y(t) < fancy digital stuff
e sampling it with a period T,
gives us the sequence
x(nTs) = x(k).

e usually we do some digital -
stuff then o
e normally the output will be e
analog again in some form %
R RAET
g L
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how does this translate to math

e input signal is x(t) and continuous
e we want x(nT), so how about x(nT) = )", x(t)6(t —nT)

1 w
x(nTs )o—o_,_ (Ts)
1w, e
(t+"T5)0—’?X(i)ef
Z X(t—i-nT)o—o 15 Z X( (6)
S X(nT)s(t — nTo—er >0 X(w+ ) -
n=—o0 s R
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second glance at the obtained spectrum

e phew ...quite some formulae there ...

let's have another look at the last one

[ee) o0

> x(nTs)d(t - nTs)O—O% > Xw+ %) (8)

n=—o0 * k=—o0

e spectrum is periodic with % =f;

— to avoid overlap (aliasing) |Wmax| < 2#%, i.e.
X(w) =0 for |w| ¢ [0, &]
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this is important

we learned we have to sample with fs > 2fpay oF [Wmax| < 27r%
this holds at all times if our signal is bandlimited

under the given conditions the spectral content in [—%, %] can be
used to completely reconstruct x(t)

there are some exceptions (I'll not discuss however)

X (w) —|Hi(w)| — |ADC| — X(w + £)

anti- aliasing
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3 Achievement unlocked

sampling theorem
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why another transform?

algehian’ A
confuzez
mi

39 /51

we just learned how to
sample a signal, so now
we're digital

fourier transform and all the
system stuff we saw before
is analog, though

using the analog stuff for
discrete systems becomes
tedious

specialized transform to
handle discrete cases would
be nice



the z-transform

[e.9]

X(@)= ) x(nz" (9)

n=—oo

the inverse is kinda mathy so let’s keep this for later

let’s talk a bit about properties

e convergence, i.e. when is X(z) less than co?

linear (we saw that already)
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the z-transform (II)

e time lag x(n — ng)o—eX(z)z~"

e convolution y(n) =" x(m)g(n — m)o—eY(z) = X(2)G(z)
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the z-transform (lII)

e let's throw what we know at an example ;-)

81}

e upper branch: x(n)ago—eapX(z)
e lower branch: x(n + 1)ayo—ea;z71X(2)
e linear: y(n) = apx(n) + a1x(n+1)o—eY(z) = (g + a1z 1) X(2)
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the z-transform (IV)

let’s have another look at the last part

y(n) = aox(n) + alX( +1)o—eY(2) = (a0 + a1z~ 1)X(2)
we call G(z) = the system's transfer function in this case
G(z) = (o +a12 1)

remark: the structure we saw corresponds to a two coefficient
digital filter
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normalized frequencies

* we saw before that discrete signals are periodic with +

® so we can just look at one period (the first one) from [ £ &
* we can identify this with [—, 7] by just letting 5 E—g

e nomenclature not clear in literature usually either Q or w for
normalized frequencies
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the discrete fourier transform

e it might be interesting to see a discrete system's behaviour in

frequency
° ( ) Yoo x(n)e~in
. =5 [T X(Q)e"dQ

o closer look reveals if we let z = e/* we again got our z-transform

* neat: take the transfer function of a system G(z) let z = &/* we
got our (discrete) frequency response G(e/?)

45 / 51



the discrete fourier transform (DFT)

N—-1 )

X(@Q) =3 x(n)e 4 (10)
k=0

x(n) = % /7r X(Q)&2"dQ (11)

e gives us the spectrum at N points Q; = kzﬁ (imagine we divide
[—7, 7] into N-1 intervals)

e in these points same as the sampled spectrum obtained by a
continuous fourier transform

e assumes implicitly that our signal is periodic

e behaves rather similar to a fourier transform but some nasty

catches related to periodicity
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digital filters

® a system that has (mostly in  "50" Aoy Ee
frequency) a certain stop pass | pass stop
behaviour we designed band band | band band

e one example could be the Hoert foerr) 0
anti-aliasing lowpass we saw
with sampling o

Hl(Q):{liﬂQ|§7r

0 otherwise
e on the right kind of
prototype lowpass, any idea
what might be the problem?

Y
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digital filters IR vs. FIR

e FIR = finite impulse e |[IR = infinite impulse
response response

e no feedback, always stable e feedback, may or may not

e can be designed to have be stable
linear phase e cannot have linear phase

e order = Ftcoefficients -1 e if linear phase is not a

e we focus on these ones requirement, more bang for

buck
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DIY FIR filters using the windowing method

e technique called window method

e idea: specify ideal frequency response, and calculate it's iverse —

straightforward

1. pick your ideal frequency response Higear(S2)

2. pick a filter order (how many coefficients?)

3. if order is odd we have to cope for the delay to make filter causal
Hldeal causaI(Q) - Hldeal(Q)e 'I -0

4. compute hldeal causal n) f_ Ideal,causa/(Q)ejﬂndQ

5. pick window function, calculate W(n) e.g.
Whamming () = 0.54 — 0.46cos( 1™ 2’”’
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windowing method example

* say we want to design a lowpass with weyroff = 7 and order 4

1 (5% _jwag g
hideal,causa/(n) = 5 e/ 2 e dQ

27 s
1 . us
ST e,
2m(n — M31)) =
_ sin(7(n — —))
w(n— N51)
in(Z(n— 2
= 12
w(n) = 0.54 — 0.46cos(*2") (13)
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numpy and gnuradio

numpy's fft goes from [0, 27| not from [—m, 7] so use
numpy.fft.fftshift ()

matplotlib + pylab is quite nice

e ipython -pylab
or bpython make quite nice IDEs

when working with real world stuff avoid designing filters by hand

-)
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