
Introduction TI MSP430 : ASM coding

Seb

Hackerspace Brussels

14 Jul 2012

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 1 / 40



What’s a Processor

Definition from Wikipedia

It is a multipurpose, programmable device that accepts digital data as
input, processes it according to instructions stored in its memory, and
provides results as output. It is an example of sequential digital logic, as it
has internal memory.
Microprocessors operate on numbers and symbols represented in the
binary numeral system.

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 2 / 40



Why MSP430 ?

Advantages

16 bits Microcontroller

Low Cost (begins at 0.5$ and free samples ;)

Launchpad (evaluation platform at 4.30$)

Supported by GCC and Binutils

Ultra low power consumption

Drawbacks

Weird peripheral configuration

Memory space limited to 64kB (MSP430) and 1MB (MSP430X)

Low IPC count

Little-Endian

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 3 / 40



How MSP430 and Processors work

Internals

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 4 / 40



Instruction Cycle

Instruction Cycle

Instruction Fetch (Get what you need to do)

Instruction Decode (Understand what you need to do)

First Operand Fetch (Not enough information, get some more)

Second Operand Fetch (Still not enough information, get some more)

Execute (Do it !)

Writeback (Write result of the operation)

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 5 / 40



Instruction Format for 2 Operands Arithmetic

Instruction Encoding

Instruction List

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 6 / 40



Instruction Format for 1 Operand Arithmetic

Instruction Encoding

Instruction List

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 7 / 40



Instruction Format for Conditional Jump

Instruction Encoding

Instruction List

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 8 / 40



Memory Mapping

Memory Map

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 9 / 40



Memory Mapping

Byte Ordering (Little Endian)

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 10 / 40



Addressing Modes

Source Addressing Modes

Register

Indexed

Symbolic (PC Relative)

Absolute Address

Indirect Register

Indirect Autoincrement

Immediate

Destination Addressing Modes

Register

Symbolic (PC Relative)

Absolute Address

Indexed

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 11 / 40



Addressing Modes : Register Mode

Example

mov R5, R6

Explaination

Moves the content or the register R5 into R6 without altering R5.

Usefulness

Save a register to another

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 12 / 40



Addressing Modes : Indexed Mode

Example

mov 4(R5), R6

Explaination

Add 4 to the content of R5 inside the CPU

Fetch the memory address from the forementionned computation

Store the value into R6

Usefulness

Access an item in memory (eg. an array) with a constant offset

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 13 / 40



Addressing Modes : Symbolic Mode

Example

mov 0x1234, R6

Explaination

Add 0x1234 to the PC to generate the address

Fetch the memory from the address of the forementionned
computation

Store the value into R6

Usefulness

Access an array of data stored in the program memory

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 14 / 40



Addressing Modes : Absolute Mode

Example

mov &0xDEAD, R6

Explaination

Fetch the memory from the address 0xDEAD

Store the value into R6

Usefulness

Access memory at a known address (eg. Peripheral)

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 15 / 40



Addressing Modes : Indirect Register Mode

Example

mov @R8, R6

Explaination

Fetch the memory at the address contained in R8

Store the value into R6

Usefulness

Use a register as a pointer to memory

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 16 / 40



Addressing Modes : Indirect Autoincrement Mode

Example

mov @R8+, R6

Explaination

Fetch the memory at the address contained in R8

Store the value into R6

Increment R8

Usefulness

Copy a data to somewhere else in 1 instruction

Stack Popping

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 17 / 40



Addressing Modes : Immediate Mode

Example

mov #0xBEEF, R6

Explaination

Load R6 with 0xBEEF

Usefulness

Initialize a register with a value

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 18 / 40



Word or Byte ?

Word Access

CPU naturally works with 16 bits words.

Instructions suffixed with .W or nothing.

Flags are updated with the word operation.

Address of the operands MUST be aligned on 16 bits (also true for C).

Byte Access

Sometimes, it’s necessary to work with bytes.

Instructions are suffixed with .B.

Flags are updates with the byte operation.

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 19 / 40



Registers

Registers Description

R0: Program Counter (Address of the next instruction)
R1: Stack Pointer
R2: Status Register (Generates other constants)
R3: Constant Generator (Generates 0, 1, 2, -1)
R4-R15: General Purpose Registers

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 20 / 40



Registers

R0 Program Counter

Contains the next instruction to be executed.

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 21 / 40



Registers

R1 Stack Pointer

Contains the next value where value will be stored.

Stack

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 22 / 40



Stack (LIFO) Management

Pushing

Store temporary data

Keep track of callings

Save return status for interrupts

Popping

Get temporary data back

Automatically gets data on interrupt/function call return

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 23 / 40



Registers

R2 Status Register

Contains the Status and Configuration of the processor.

Status

V flag: Overflow on signed operation (127+1=-128 or -128-1=127)

SCG0,SCG1,OSCOFF,CPUOFF Clock management

GIE: Global Interrupt Enable

N: Negative bit (sign bit of the value)

Z: Zero bit (result of the last operation is zero)

C: Carry bit

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 24 / 40



Registers

R3 Constant generator

Contains frequently used constants depending on the addressing mode.
This is transparent to the ASM programmer. It is handled by the
assembler.

Constants

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 25 / 40



Interrupts

What is an interrupt ?

Change in the program flow to do specific things.

How to do it ?
Interrupt_Vector:

do your stuff but keep it short

reti

then, add the label into the interrupt vector table

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 26 / 40



Interrupts

Vectors

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 27 / 40



How-to

Move Data

mov src, dest
reads as move source to destination

Constant to Register mov #0, R7

Register to Memory mov R7, &ADDRESS

Memory to Register Indirect mov &ADDRESS, @R7

Constant to Indexed mov #4, 0(R7)

Arithmetic operation

add src, dest
read as add source to destination

Constant to Register add #0, R7

Register to Memory add R7, &ADDRESS

Memory to Register Indirect add &ADDRESS, @R7

Constant to Indexed add #4, 0(R7)
Seb (HSBXL) MSP430 Workshop 14 Jul 2012 28 / 40



How-to

Logic Operation

and src, dest
read as and source and destination

Constant to Register and #0, R7

Register to Memory and R7, &ADDRESS

Memory to Register Indirect and &ADDRESS, @R7

Constant to Indexed and #4, 0(R7)

Control Flow

use Compare, or do an arithmetic operation

use JNE, JEQ, JC, JNC, JZ, JNZ, JGE, JL

Example:
CMP #2, R9
JEQ label

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 29 / 40



How-to

Call
CALL #label

Some random stuff

label:

Do stuff

ret

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 30 / 40



C structures

If in C

if (R6 == 0xBABE) {

Do something

}

Other code here

If in ASM
cmp #0xBABE, R6

jne other_code

Do Something

other_code:

Other code here

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 31 / 40



C structures

For in C

for (R6 = 0; R6 < 10; R6 ++) {

Do something

}

Other code here

For in ASM
mov #0, R6

beginning:

cmp #10, R6

jge other_code

Do Something

inc R6

jmp beginning

other_code:

Other code here

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 32 / 40



C structures

While in C

while (a == 5) {

Do something

}

Other things

While in ASM
begin:

cmp #5, R6

jne exit

Do Something

jmp begin

exit:

Other things

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 33 / 40



C structures

Do. . . While in C

do {

Do something

} while (a == 5);

Do. . . While in ASM
begin:

Do Something

cmp #5, R7

jeq begin

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 34 / 40



Watchdog

Avoid CPU crash

Needs to be reset before overflow resets the CPU

Write configuration/Reset at address 0x120

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 35 / 40



Input/Output

Registers

PxIN: Input value

PxOUT: Output value

PxDIR: Direction value

PxSEL: Select between IO and Peripheral mode

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 36 / 40



Timer A

Info

Does Capture and Compare

Counts Up/Down, up to Max, or up to defined period TACCR0

Generates outputs with the Compare

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 37 / 40



Analog-to-Digital Converter

Info

Integrated Voltage reference

Max 200 ksps

Conversion Synchronized with Timer A

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 38 / 40



Other Peripherals

Digital

Analog-to-Digital Converter

U(S)ART

Other Timers

DMA Engine

Flash Memory Controller

Multiplier

Analog

Comparator

Digital-to-Analog Converter

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 39 / 40



NOW, ARBEIT UND SCHNELL !!!

Seb (HSBXL) MSP430 Workshop 14 Jul 2012 40 / 40


